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AbIlraet-The constitutive equations for strain hardening (f.c.c. metals and alloys) and strain softening­
hardening metallic materials (b.c.c. metals and alloys) have been developed. The development is within the
framework of the endochronic theory of viscoplasticity. In this discussion. the intrinsic time is dependent on
the plastic strain rate.

The strain rate and the strain rate history effects have been investigated. Sets of constant-strain-rate
stress-strain curves have been theoretically obtained for both classes of metallic materials mentioned. The
strain rate history effect is studied in terms of low-hiah and hiah-low strain rate change test sequences. For
a fixed strain rate history in the case of strain hardening materials, a similar pattern of subsequent material
behavior isobtained, indepeildentofthe strain mqnitudeat which the strain rate cbaDaetatesplace. However,
in the case ofstrain softelling-hardeDi materials, the strain magnitude at which the strain rate changeoccurs
affects the subsequent material behavior.

Theoretical results are compared with experimental data found in the literature.

I. INTRODUCTION
The study of dynamic plasticity of metallic materials has become increasingly important in
recent years. It is now clear that many practical problems such as brittle fracture, stress wave
propagation and high rate forming can only be satisfactorily treated if the rate dependence of
the plastic behavior of the material is taken into account. The behavior of materials under
dynamic loads is obviously of considerable interest in most mechanical analyses of design
problems where dynamic loads are present. Unfortunately, much of the engineering design
today is still based on the static properties of the material rather than dynamic properties.
Further understanding of the dynamic properties would lead to improvement in engineering
design.

Dynamic plasticity of metallic materials was first seriously investigated in 1872 by
Hopkinson[l). In this paper, the rupture of iron wire by impact loading was discussed. In the
last 3Oyr, a large volume of papers, such as BeU[2), Ripperger[3), Malvem[4), Lindholm[S) and
CampbeU and Marsh[6), to name only a few, have presented the results of impact or impulsive
loading of a bar. Stress wave propagation in plate and cylinder, and propagation of cracks using
high speed testing machines have also been investigated, all with the purpose of defining the
intrinsic dynamic mechanical properties of the materials.

The influence of strain rate on the mechanical response has been studied extensively in the
past. But in most experiments, whether they involved tension, compression or torsion, the strain
rate was held constant. This situation was particularly true in a hiah strain rate testing where
changes of strain rate were difficult to obtain. Unfortunately, constitutive relations derived on
the basis of experiments at single strain rates are, in a sense, oversimplification.

A strain rate history independent (but strain rate dependent) theory was presented by
Sokolovsky[7] and Malvem[8). The theory assumes that the plastic strain rate is a function of
the overstress, which implies that the current stress depends only on the current strain rate but
not on the past strain rate. The overstress is the amount of stress by which the applied stress
exceeds the corresponding flow stress for the same strain at vanishingly small strain rate.
Unfortunately, the foregoing assumption does not agree with the more recent experiments
which show that the current stress depends on the history of strain rate. However, the nature of
strain rate history dependence is not wen understood at the present time.
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The strain rate history effect was first investigated by Campbell and Duby[9] in 1956. In this
study, the static reloading in compression of dynamically prestrained specimen of mild steel
was investigated. It was found that the stress required to produce a given amount of plastic
strain was less for the specimen prestrained dynamically than for those prestrained statically. In
1961, Smith[10] presented test results of dynamic stress-strain behavior of low-carbon steel
subjected to a change in strain rate from 2.22 x 10-7 per sec to 7.5 per sec and also those from a
high strain rate to a low strain rate loading sequence. Also in 1971, Nicholas [11] presented test
results to show the strain rate history effect of 1020 steel with a change of shear strain rate from
10-4 per sec to 25 per sec. Results from these papers showed that strain rate history effect was
very pronounced in steel. Qualitative differences were found among experimental results of
Smith's and Nicholas' studies. No explanations to this effect have been given, however, in the
literature. In the present paper, a unified approach will be given which shows that these
seemingly incompatible observations are truly the anticipated material response under different
loading conditions. All the experiments mentioned above were conducted on steel. No data was
found available for other body-centered-cubic (b.c.c.) metallic materials.

The strain rate history effect of face-centered-cubic (f.c.c.) polycrystalline metallic' materials
was discussed in a number of papers. Lindholm [12] examined the effect of previous strain rate
history on the stress-strain curve of annealed high purity aluminum by alternately strain cycling
the same specimen at widely divergent strain rates. In 1968, Klepaczko[13] studied strain rate
history effect of polycrystalline aluminum (99.8% AI) and presented strain hardening curves
obtained from shear tests at room temperature with a change in strain rate from 1.66 x 10-5 per
sec to 0.624 per sec. Results of a reversed test sequence for the same strain rates were also
presented. In 1972, Frantz and Duffy[14] presented curves showing the dynamic stress-strain
behaviQr in shear of 11()()'() aluminum subjected to a sharp increase in strain rate from
10-5 per sec to 8.5 x 1()2 per sec imposed at several strain magnitudes in the range of 0.01-0.15.
Klepaczko [15] investigated the strain rate and strain rate history behavior of copper (98.5% Cu)
under tensile and also torsional load with a strain rate ranging between 2.2 x 10-3 per sec and
6.1 x 10-1 per sec in tensile testing and up to 9x 1()2 per sec in torsional testing. In 1977,
Klepaczko, Frantz and Duffy[l6] presented the additional results of copper and lead showing
that the materials are affected by the strain rate history. Additional data of strain rate history
effect have also been reported for two kinds of aluminum alloy by Nicholas[l1] in 1971. The
results of above papers show that the strain rate history effect of f.c.c. and b.c.c. metallic
materials are different. The difference will be discussed and explained in this paper from the
viewpoint of the proposed theory.

The above review indicates that the strain rate history effects are very important in both
b.c.c. and f.c.c. metallic materials. A more general analysis of strain rate history effect is
needed. Unfortunately, most of the papers reviewed above dealt only with experimental data
and testing procedures. The theoretical work based on continuum mechanics has not progressed
beyond the strain rate effect on f.c.c. metals. Theoretical predictions in strain rate effect of
b.c.c. metallic materials and strain rate history effect of both b.c.c. and f.c.c. metallic
materials cannot be found. Thus a unified analysis of both of these factors is a
much needed effort and constitutes the main purpose of this paper.

The proposed theoretical analysis is based on the endocbronic theory of plasticity developed
by Valanis[17,18]. This theory is a phenomenological theory that conforms with ther­
modynamics and continuum mechanics. It is not the purpose of this paper to discuss the
physical foundation of the theory. However, the equations to be discussed are useful in the
engineering analysis and design.

A brief summary ot the updated version of the endochronic theory is given in Section 2.
Within the framework of this theory, the constitutive equation for strain hardening materials
(f.c.c. metals and alloys) has been developed for the one dimensional dynamic response and is
presented in Section 3. In this development, the intrinsic time is proposed to depend on a
function of strain rate. In Section 4, the theory is applied to provide theoretical predictions in
the mechanical behavior of strain softening-hardening materials (b.c.c. metallic materials)
under dynamic loadings. Generally, the behavior of this class of material is quite different than
that of f.c.c. metals and alloys. The difference is accounted for by the functional relationship
between the intrinsic time z and the intrinsic time measure C. This relationship is thoroughly
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investigated in the paper. The constitutive equations are also applied to investigate the strain
rate history effect for both the b.c.c. and f.c.c. metallic materials. The theoretical results are
then compared with experimental data reported in the literature.

2. BRIEF SUMMARY OF ENDOCHRONIC THEORY OF PLASTICITY

The endochronic theory of viscoplasticity developed by Valanis[17] is based on the notion
of intrinsic time and the thermodynamic theory of internal variables. Since most of the
materials are, in general, strain history dependent, a time measure d' is defined such that

(1)

where Eij is the strain tensor and PI/tl is a positive definite material tensor, which for isotropic
materials take the form

(2)

In eqn (2) PI and P2 are material constants satisfying PI +p,J3 Cl: 0 and P2 Cl: O. In addition, a time
scale z(l') is introduced such that dz/d'>O.

This concept together with the thermodynamic theory of the internal variables gives the
following explicit constitutive equation for isotropic materials under small isothermal defor­
mation:

(Tli = 8/jf A(Z-ZI)~~dZI+2Lzp.(z-Z')~dzl (3)

where (Tli is the stress tensor, eij is the deviatoric part of Eli; 8q is the Kronecker's delta; and
'\(z) and p.(z) are heredity functions. But the definition of intrinsic time in eqn (1) has led to
difficulties in cases where the history of deformation involves unloading. Valanis[l8] has since
introduced a new concept of intrinsic time to overcome these difficulties. In the one dimen­
sional case the new intrinsic time , is defined as

(4)

where kl is a positive scalar such that Os kl s 1and Eo is the elastic modulus. Generalizing to
three dimensions and r internal variables, a strain like tensor 8/j is defined as

and

81i =Eij - tPllfdCTlcl (5)

(6)

where </II/tl is a positive definite symmetric fourth-order tensor; Q" is the deviatoric part of 8tJ;
/Lo is the shear modulus; and Sli is the deviatoric part of (Tljo Based on the formulation in
Ref. [17], the response of metals in the small deformation region with an elastic hydrostatic
response can be written as

and

(T,*=3K~

Sjj =2f p.(Z-Z')~dt

(7)

(8)
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where K is the bulk modulus. If the function ",(z) is defined as

",(z) = 1J.o0(z) (9)

where 0(0) =I, and using the Laplace Transformation technique, eqn (8) together with eqns (6)
and (9) can be written as

Si} =21J.of p(z - z') ~~l dz'

where p(z) is related to O(z) by the integral equation

(Z dO
p(z) - kl10 p(z - z~ dz' dz' =O(z).

(10)

(II)

The solution of this integral equation in the case of two internal variables is obtained by the
Laplace transform technique under the assumption of kl approaching to 1. The result is

(12)

where ao, a, E1 and Ez are material parameters. In the case of uniaxial stress, the constitutive
equation is given by

r: dB
u = Eo10 p(z - z') dz' dz'

where B= E - (ofEo) for kl~ I is the plastic strain, and eqn (4) can be written as

d(= IdBI

(13)

(14)

3. STRAIN HARDENING MATERIALS

In this section, the endochronic theory with the new definition of intrinsic time, which has
been briefty summarized in the previous section, is applied to obtain the stress-strain relation
for strain hardening materials subject to strain rate and its history effects.t The strain hardening
behavior is a characteristic of most f.c.c. metallic materials.

The definition of intrinsic time by Valanis[l8) is not readily applicable to describe the strain
rate and strain rate history dependence of this class of material. A modified form is thus
proposed which makes the constitutive equation depend not only on the deformation but also
on the strain rate and strain rate history. The theoretical stress-strain relations for various
constant strain rates (in the range of 10-4-103 per sec) are then presented and the results
compared with the experimental data of Karnes and Ripperger[19) for annealed aluminum.
Based on this constitutive equation, the loading-unloading-reloading loop is discussed and
comparison with the experimental data of Papirno and Gerard [20) for aluminum is presented.
Also, the strain rate history effect is thoroughly investigated and results compared with the
experimental data of Frantz and Duffy[l4] for II()().() aluminum.

In the case of uniaxial stress, the constitutive equation by use of the new intrinsic time was
obtained by Valanis[l8) and was mentioned in eqn (13). However, the dynamic effect was not
considered during the derivation of this equation in (18). To accomodate the dynamic response
of metallic materials, the new intrinsic time measure is modified. A more general form of the
intrinsic time measure involving strain rate effect can be written as

d( = k(Ii)ldBI. (IS)

tWhile the equations in Section 2 are generally valid, the discussion of the strain rate and the strain rate history effecls
presented herein is restricted to the one-dimensionaJ case.
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It is shown in the Appendix that .the above definition of intrinsic time conforms that originally
given by Valanis[l8].

In this case, eqn (13) is written as

I, 1 dr'
0' = Eo p(z - t)-.::L dz',

o k(O) dz'
(16)

Since k(8) is a function of strain rate, then eqn (16) is a constitutive equation encompassing the
strain rate and strain rate history effect. As kl approaches to I, the function p(z) shown in eqn
(12) can be written as

Eop(z) =E0P08(z) + EoPI(Z)

where Po is a constant, 8(z) is delta function and PI(Z) is given by

Then, from eqn (16), it follows that

1 dT i' 1 dT
'0' = EoPo--:- =:l. +Eo PI(Z - Z') --:-::Ldz'•

k(8)dz 0 k(8)dz'

At z =0, eqn (19) reduces to

0'= EOPo~!!i1 .
k(8)dz ,.0

(17)

(18)t

(19)

(20)

(21)

It is seen that dDdz is indeterminate when z = O. However, when z>0 the derivative d(/dz
exists, and specifically at z = 0+ the limit of d,/dz can be obtained. In fact, the point 0+ is the
point of deviation from the elastic response. At this point, the stress must be equal to the yield
stress, and eqn (20) becomes

10'12 = Eo2Po2[_1_.]2(!!ifI ,:.0',2
k(8) dz ,.0.

Therefore, the yield stress 0', defined in eqn (21) is not a constant but is a function of strain rate
due to the presence of the strain rate sensitivity function k(8).

3. I Loading cu",es with constant strain rate
In a loading process, the increment of plastic strain is positive. Then, eqn (IS) becomes

d'=k(8)d8 (22)

where k(8) is constant for a constant strain rate. Moreover, if the following relation is used

1
Z =j10g(1 + IJP (23)

where IJ is a material parameter, then from the constitutive equation (16) and the associated
relations, it is possible to establish under the condition of constant strain rate, that

0' = Eg(l +PJ}U-(l +IJp-Clto-t,/HI)}+ 8 1(1 + OO{1-(l + lJ(r,,}+§i (24)
IJI<no - kl) IJln k

tBecause of the complexity of the COllStitutive equaticm and tbe fact that the number of material parameters increases
with the number of intemal Ylriables. it is nat1lrIIto strive for the minimum number of intemal variables which will suftice
in the accurate and acceptable prediction of the material response. Two intemal variables are used throughout this work.
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where

and

H. C. Wu and M. C. YIP

n =~+1
13

010no=-+1
13

131 =13k.

(25)

(26)

(27)

At the initial point of the intrinsic time measure' =0+ {i.e. when eis equal to zero}, u is equal
to the yield stress. Hence,

For large, (or 8), eqn (24) approaches to an asymptotic line given by

(1 = u)'{1 +1310)+ ;1 (1 +1310)+ ~8.
,.,In

(28)

(29)

Defining Uo as the intercept of this asymptotic line with the stress axis, E" the tangent modulus
of the asymptotic line and Ep, the initial slope of the stress-plastic strain curve, it is easy to
establish that

EI (30)-=Uo-U
PIn )'

E,-Ez (31)131=--
Uo

and

1:\1+EI+~=Ep (32)

where Uo and Uy are functions of strain rate. Thus, for each strain rate, there corresponds a
stress-plastic strain curve. The experimental data of Karnes and Ripperger[l9] for annealed
aluminum show that the stress-plastic strain relations at different strain rates are almost parallel
to each other at least in the range of 8<2%; i.e. E, remains constant for all strain rates.t Based
on these experimental curves and eqn (31), and assuming k to be equal to I on the curve of
reference strain rate, Fig. I has been constructed and the data points are nicely fitted by the
following expression for the strain rate range from 10.... to 10' S-1

k(th=l-kIIOg(~ (33)

tFor the nonparallel case reported by Hauser It 41.[22]. this theory is stiD valid with the modification that E, depend on
the strain rate. In this case bO should also depend on strain rate for the theory to be self tonsistent It tan be shown from
eqns (28). (30) and (31) that

It is seen that bO inc:reases with E,. but the thange in Eo is too small to show in the graph.
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where k, is a material parameter; and 80 is a reference strain ratet taken as 1.5 x 10...... per sec in
this case. This expression has the same form as that of Un and Wu[21). The only difference is
that in eqn (33) the plastic strain rate is used instead of the total strain rate. In fact, the plastic
strain rate is approximately equal to the total strain rate in the large strain range. Only in the
small strain range is the difference significant. However, in this range the strain rate is difficult
to monitor experimentally and the results are less reliable.

The material constants, 13" 0'0, 0', can be measured directly from each constant strain rate
stress-strain curve. Theoretically, eqn (28), (30), (31) and (32) are not sufficient for the
determination of the five parameters, i.e. 13.. no, n, E. and £". Thus, the constitutive equation
may be rewritten in the following more convenient form:

0' == (1 +1316)[0'0 - (0'0 - 0',)(1 + f3.6r"] + £,,6 (34)

in which 1310 n, and £" are parameters yet to be determined. Equation (34) has been obtained
from eqns (24), (28), (30), (31) and (33).

The parameters f3 to n and £" are determined by the trial and error method so that the
theoretical curve agrees with the experimental reference curve. Note that 131 is related to E2 by
eqn (31), so that only nand £" can be varied.

Equation (34) describes a set of stress-strain curves at various constant strain rates. The
theoretical results and the experimental data of high purity aluminum at the strain rates from
1.5 x 10...... per sec to 5000 per sec[19] are shown in Fig. 2. The comparison is satisfactory for the
set of stress-strain curves. The parameters of this material are determined to be

Eo == 10 x 10' psi (6.89 x 1()4 MPa) 13 == 180
(TOo == I XI()3 psi (6.89 MPa) n == 2S

(T,o =0.75 x 1()3 psi (5.17 MPa) E" == 0

where (TOo and 0'.,0 are the intercept of the asympt~ticline with the stress axis and the initial
yield stress for the reference stress-strain curve. 80 is assumed to be 1.5 x IQ-4 per sec in this
investigation. The strain rate sensitivity function k has already been determined in F"18. 1.

tEquation (31) determiDes the empirical relation fl. = IJ. -14 loa(itio>, where fl. IJId 14 arc IlI8tCriaI parameters. The
refcrcnc:e.strain rate .. is a convenient strain.rate within the J'IIIIC of validity of eqn (33). By choosiaa a ditfcrcllt io the fJl
VI 10&(1(",) relation is just shifted aJoaa the, axis and the parameter fJ. needs to be adjusted 1CCClI'diDaIY. Equation (33) is
the normalized form of the above equation with respect to the matcriaJ constant -. It is a reasoaalIIe approximation to take
",-I.S xl'" S-I u the "quasi-static" strain rate. At this strain rate. it is convenieDt to put k-I and fl. - fJ.
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F\&. 2. Constant strain tate stress-strain curves for annealed aluminum.
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F\&. 3. Hysteresis loop for PUle aluminum.

3.2 Hysteresis loops
Equations for loadiDa-unloadioa-reloading processes at constant strain rate can be obtained

in closed forms by the integration ohqn (16). Appropriate forms of eqns (IS) need to be used in
this exercise. It suffices to mention only that a 'drop in stress of magnitude 20',(1 + fW) occurs
during the elastic part of the unloadina process, where unloading starts at &*. Similarly, a rise in
stress of 20',(1 +1Jl") occurs durina the elastic part of the reloading process. The process of
reloading is assumed to begin at &*.. FIgUre 3 illustrates a theoretical hysteresis loop.
Experimental curve obtained by Papimo and Gerard (20) is also shown for comparison. The
material in consideration is that of the commercially pure aluminum. The material parameters
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have been determined as

S23

Eo =10 x 10' psi (6.89 x 10-- MPa)
uoo=2.35 x 1()3 psi (16.19 MPa)
u,o =1.25 x W psi (8.61 MPa)

f3 =695
n =10
&=0.

It is remarked that the subject of hysteresis loop was investigated by Valanis[l8]. However,
the strain rate and the strain hardening effects were not included in his presentation.

3.3 Strain rate history effect in the constitutive equation
The strain rate effect in the constitutive equation has been discussed in the previous

subsections. It was shown that the stress-strain relationship for the strain rate sensitive
materials may be described by a set of curves each corresponding to a specific strain rate. In
this subsection, the effect of strain rate history in the constitutive equation is examined. In
general, the discussion is separated into two parts. The first part is related to the strain rate
changing from low to high during testing and the second part is that of a high-low strain rate
change test sequence. These two parts are discussed in detail below.

(a) Low-high strain rate change test sequence. Since the function k(9) is dependent on the
strain rate, its value is not the same before and after the change in strain rate. If the strain rate
change occurs at 8 =8* (or' =(*), eqn (15) becomes

(35)

where k, and kh are the values of k corresponding to the low and high strain rates, respectively.
The constitutive equation for the range of's (* is given in eqn (34) with k =lc,. For the range of'> (*, the constitutive equation is given by

u=Eo po p(z - z/)(1.)~ dz' +Eo P p(z - z'}(1.)~ dz' .Jo k, dz Jzo Ie" dz

Integrating the above equation, one obtains

and

(36)

(37)

(38)

The effect on the material behavior due to the strain rate history considered here is shown
schematically in Fig. 4. The solid line is the loading curve with a charJge in strain rate from low
to high at point M where the plastic strain is equal to 8*. The dotted line PQ denotes the
constant strain rate stress-strain curve at the previously descnDed high strain rate. The stress at
points M, P and N can be found and it is obvious that at the point of change in strain rate a
jump in stress of magnitude

occurred. Since N does not coincide with P, the difference in stress is attributed to the strain
rate history effect.
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Pia. 4. Schematic presentation of response of strain hardenina materials to low-hiah strain rate chanae test
sequence.

Frantz and Dufty[l4} presented experimental curves showing the dynamic stress-strain
behavior in shear of 1106-0 aluminum subjected to a sharp increase in shear strain rate from
10-5 per sec to 8.5 x 1()2 per sec imposed at several levels of strain in the range of 0.01-0.15.
Figure 5 shows the results of both theoretical calculations and experiment. The theoretical
curves for low constant strain rate before the change of strain rate and for high constant strain
rate are calculated by use of eqn (34) with Ie, =1and kll =0.75, respectively. The other material
parameters are determined as

tTOO =3x 1()3 psi (20.67 MPa) {J =5
tT,o = 1.25 x 1()3 psi (8.61 MPa) n = 30
E,. =35 x 1()3 psi (2.41 x 1()2 MPa).

In this figure, the theoretical results are in qualitative agreement with the experimental data
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for strain rate change test sequence at several strain levels in the range up to 0.05. But the
jumps in stress at the change of strain rate as predicted by the theory are slightly larger than
those actually obtained by experiment. Also in experiments, after each jump, a drop in stress
appeared which was not anticipated by the theory. However, in a different series of experi­
ments by Senseny, Duffy and Hawley[23] on essentially the same material, the stress drop was
not observed.

At large strain range, the stress calculated from eqn (37) rises above the curve of high
constant strain rate. It can be shown that the stress at Q in Fig. 4 is greater than that at R by a
constant amount O'ooflS*[(kJkit) -1]. This phenomenon is not experimentally observed. But in
view of the fact that this difference in stress is small and the over-shooting occurs only at larger
strain range (>3%), the theoretical results are considered to represent a reasonable first
approximation for a small deformation theory.

(b) High-low strain rate change test sequence. In this sub-section, the sequence of strain
rate change is reversed. The strain rate is first kept at a high rate and then changed into a lower
rate. The solid line in Fig. 6 illustrates schematically this change; whereas the dotted lines
represent the stress-strain curves at constant strain rates. Using a similar procedure as in the
last sub-section, the constitutive equation for '> C* can be expressed as

and

Again, in Fig. 6, a drop in stress of

0* T_"
O=-+L-.L

kit Ie,
(40)

from point M to point N has been resulted. The stresses are different between N and P which
indicates a strain rate history effect. Also, for the same large strain, the stress at Q is Jess than
R by a constant value of O'ooflS*[1-(kltlk,)].

Klepaczko[13] presented experimental curves of copper subjected to a sudden decrease in
strain rate from 0.624 per sec to 1.66 x 10-$ per sec at several strain Jevels in the range of

~
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M ;,,' __ R
~ Q

N ...... \.... -...., p CONSTANT LOW
,," STRAIN RATE,

,­
,-,,

I

""'------'-----------9
rJg. 6. Schematic: presentation of response of strain hardening materials to hiah-low strain rate change test

sequence.
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Fig. 7. Behavior of 11()()'() aluminum in shear under high-low strain rate change test sequence.

0.15-0.50. However, no data is provided in the strain range within 0.05. Figure 7 shows the
theoretical curves obtained by use of the same parameters used in the construction of Fig. 5.

It should be remarked that the shape of the stress-strain curve after the strain-rate drop is
dependent on the strain level where drop occurs. Theoretically, a critical strain level may be
defined at which the slope of the stress strain curve is zero immediately after the strain rate
drop. For the present example the critical strain is equal to 2.1%. It is seen from Fig. 7 that the
stress-strain curves fonowing the drop in strain rate at 2.4 and 3.6% strains are qualitatively
different from that at 1% strain. Those for higher strain levels exhibit the same trend as those
obtained experimentally by Klepaczko.

4. STRAIN SOFTENING-HARDENING MATERIALS

The strain softening-hardening behavior in the stress-strain curve is observed in some
engineering materials typified by the curve shown in Fig. 8. In this curve, the stress rises with
almost negligible plastic deformation to the upper yield point. At this point, the material begins
to yield, with a simultaneous drop in stress required for continued deformation. Once defor-

r:r

rA

LL....--.__--Lf1'y E

FJI, 8. Atypical stress-strain curve of b.c.c. metallic materials.
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mation has been initiated, it continues at constant stress until the entire body has been
plastically deformed. An increase in stress is then required to continue the deformation process.
This important effect occurs in iron and low-carbon steel which are body-centered-cubic (b.c.c.)
metallic materials.

In this section, the dynamic behavior of this kind of material is described using the proposed
theory. To achieve this, the relationship between (and z is first discussed. Explicit relations for
( and z are given for hardening as well as softening materials. For strain softening-hardening
materials, a critical value (cr is introduced at which the behavior of materials changed from
softening to hardening. Using this (-z relation, the constitutive equation for b.c.c. metals is
obtained. The equation is then applied to investigate the strain-rate and strain rate history
effects of this material.

4.1 Relationship between ( and z in softening-hardening material
The relationship between ( and z was defined by Valanis [17] as

~=f«)
dz

(41)

where f«) >O. In the same paper, the linear form f«) = 1+ f3( was chosen to describe the
strain hardening materials in which {3 was a positive constant. To describe the strain softening
behavior, it is now proposed that the linear form f«() =1-{3.' be used, so that

or

~=I-{3.( ({3.>O) (42)

(43)

where {3, is a material parameter.
For strain softening-hardening materials, a critical intrinsic time kr is introduced to indicate

the point of change over from softening to hardening in a stress-strain curve. Thus, 'cr is also a
material parameter. Equations (42) and (43) are valid only in the range of '~'cr (or z~ Ier). In
addition, dadz in eqn (42) must be greater than zero, i.e. kr < lI{3,. For metallic materials, the
critical strain always exists in the small strain range, so that the above constraint is automatic­
ally satisfied. For '> (crt where the material behavior is hardening, another form of f«) is
proposed. It reads

(44)t

or

(45)

where b" and {3" are material parameters associated with the strain hardening part. Thus the
relationship between , and z is shown in eqns (43) and (45) which validates the range before
and after the critical point, respectively. If the (-z relation is assumed to be smooth, then it

tEquation (44) can be rewritten as

d{
dz - b. +AM-Cn)

which for virgin state (b• .. I. kr" 0) reduces to eqn (41) with 1(0-I +fJ{.
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should be differentiable at the critical point, and eqns (42) and (44) must be equal at 'c,. It
follows that

(46)

Thus, bfl may be calculated if 13$ and Zcr are known. The relation between' and z is plotted in
Fig. 9. This curve shows that ( is a smooth function of z in the whole range under the condition
of eqn (46). In addition, the first derivative of the curve is continuous for the whole range. The
second derivatives of the functions before and after the critical point can be found by
differentiating eqns (42) and (44). They are found to be

(47)

and

(48)

Since the material parameters P•• 13A and bit are all positive. it may be observed from eqns (47)
and (48) that the second derivative d2Udz2 is less than zero for softening and greater than zero
for hardening behavior. The present definition for (-z relation is thus different from that by
Valanis(24). The latter defines that the first derivative dadz is greater than 1for hardening and
less than 1for softening. In addition, the following explicit form was proposed in [24} for strain
softening behavior

or

dz
d( =1+(;z. «(; > 0) (49)

(SO)

However. using this (-z relation. the constitutive equation could not be written in a closed form.
On tbe other hand, the relationship for ,-z defined by eqn (42) will lead to a constitutive
equation in closed form. Comparison with the experimental results shows that the definition of
[24] is not always correct in the behavior of strain softening-hardening materials. In Fig. 8. the

I
I
I,
I,
Ic......--__...' .... z
Ier

Fig. 9. Relationship between' and z for h.c.c. metallic materials.
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strain softening behavior started at point A can be described by both definitions discussed
above. However, the strain hardening occurred at point B can only be described by the
definition given by eqns (47) and (48). According to the definition of Ref. [24], the strain
hardening will occur at a point where the stress is higher than the stress at B, unless it is allowed to
have a discontinuous d(/dz at (e,. Using the z-( relations defined in eqns (47) and (48), the
constitutive equation with strain rate and strain rate history effects of b.c.c. metallic materials can
be obtained.

4.2. Strain rate effect in the constitutive equation
The constitutive equation for b.c.c. material is separated into the strain softening and the

strain hardening parts. The strain softening part is first considered: this behavior occurs when
':S~,. Since the strain rate sensitivity function k is assumed to be a constant for a specific
strain rate, eqns (12, (15), (16) and (42) can be combined to give

o 0 0 r::_T
0' =T(1- ~,(){1-(1- ~,()III°+ltIIH:l}+0'0 k0', (1- ~,'){1-(1- ~,()"1}+:.:r (51)

where

a--I=n
~, ,

and

ao 0
~,-I=n,.

The material parameters obey the foUowing relations:

Eo _ 0

( 0 k - 0',
~, n, + I)

and

&-E,'
~, = 0

0'0

(52)

(53)

(54)

(55)

(56)

where 0',0 is the yield stress of the reference stress-strain curve; E,' is the tangent modulus of
the asymptotic straight line of the reference stress-strain curve in the softening part at large 8;
and 0'0° is the intercept of this asymptotic line on the stress axis, as kl approaches 1. Equation
(51) can be reduced further to the foUowing equation for 0< l:S ler

and

9 =(lk.

(57)

(58)

Equation (57) is the constitutive equation for strain softening behavior of b.c.c. materials
subjected to a prescribed strain rate.

As the strain increases, the material changes from softening into hardening at the critical



m RC~~~Cfu

point k,. For' > kr and kl~ 1, the following constitutive equation may be derived:

and

6=llk (60)

where

ao+1=n"o (61)
p"
a

(62)p+l=n"

b"Eo _ b 0 (63)IJ ( 0 k) - "u,"n" - t

b"Et (0 0) b( 0 ~ (64)r= UOer-Uer + "Uo -U,
"n"

lh!= E,"-~ (65)
b" o 0 +b bUCcr - Uer "Uo

and

l=l-lcr (66)

in which U~r is the stress on the references stress-strain curve at the critical point; E," is the
tangent modulus of the asymptotic straight line at large strain; and uScr is the intercept of this
asymptotic line of the reference curve with the vertical stress axis passing through B=Be,. The
material parameters mentioned above are shown in Fig. 10.

The stress-strain relation of softening-hardening material under constant strain rate for the
ranges before and after the critical point is thus expressed respectively by eqns (57) and (59). All
material parameters involved can be determined from a reference stress-strain curve using the
method described in Section 3for the strain hardening material. Since the strain rate sensitivity
function k is equal to u,o/uy (or uoo/uo), where Uy and Uo are functions of the strain rate, the
function can be determined from the experimental data.

The theoretical predictions are now compared with experimental data obtained by Campbell
and Marsh[6] for mild steel. Based on these experimental data, and assuming that k is equal to

iT

E~

rr E~

~ 66t ,

VII· 10. Constant strain rate stress-plastic strain curve of b.c.c. metallic materials.
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rig. 11. The sttain rate sensitivity function for mild steel.
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1 on the reference stress-strain curve, Fig. 11 is constructed. It is seen that a logarithmic
expression for k. as in the case of strain hardening materials. can fit the data nicely. In this
calculation. the reference strain rate is taken as 10'"per sec. and the following material
parameters are used:

8
k =1-0.09710810"

80
u.,o = 35 ksi (2.41 x 1()2 MPa)
uoo = 29.5 ksi (2.03 x 1()2 MPa)
uSc, = 35.5 ksi (2.45 x 1()2 MPa)
u~, = 29.5 ksi (2.03 x 1()2 MPa)
Et' =0
E,1t = 350 ksi (2.41 x I&' MPa)
& =236 ksi (1.63 x 10' MPa)

',=0.017
nl =50
nil =10

III =8

IlJbit = 3.654
bit =0.864.

The results of the theoretical prediction and the experimental data for the dynamic stress-strain
curves are shown in Fig. 12. The agreement in this figure is obviously good in the range of strain
rate from 10'"per sec to 5per sec. It is seen that the critical strain increases with the strain rate.

4.3 Strain rate history elect in the constitutive equation
The strain rate history effect of strain hardening materials has been discussed in Section 3.

A conclusion of the discussion is that the behavior of material varies with different history of
strain rate. However. for a fixed strain rate history. a similar pattern of material behavior is
obtained, independent of the strain mapitude at which the strain rate change takes place. The
latter is DO 1011I« true for the strain softening-hardening materials. For this type of material.
the subsequent material behavior is highly dependent on the strain mapitude at which the
strain rate chanae occurs. The constitutive equations for strain rate change occurred before or
after kr in both hiab-low and low-hilh test sequences can be obtained by use of eqns (42) and
(44) in their valid range. Some calculated results are shown in F'Jgs. 13-16 which will be further
explained.

In 1961, Smith[10] presented experimental results of mild steel for both low-hilh and
hiab-low strain rate change sequences in the case of '* < 'CI" F'JgUres 13 and 14 illustrate the
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Fig. 12. Constant strain rate stress-strain curves for mild steel.
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Fig. 13. Behavior of mild steel in tension under low-higb strain rate change test sequence (l'* S k,).



Strain rate effects on the dynamic behavior of melallic materials 533

_.- EXPERIMENT BY SMITH (10) 700
100 THEORETICAL CURVES WITH;

90
- VARIABLE 6
-- --- CONSTANT 8 600

80

~.
500

70

.., 60 811 400,-
~ - . . .
" 50 \I,

'" .
300

40 '.. it
"'-,,--:,~ ................r'I ......

/" --30 v· .......-- 200

20 91\' 7.5 per sec 100
10 81" 2.22 x 10.7 per sec

o o.Z 0.4 0.6 0.8 1.0 1.2 1.4 1.6 l.8
PLASTIC STRAIN %

Fig. 14. Behavior of mild steel in tension under high-low strain rate change test sequence «(*:S ",,).
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Fig. IS. Behavior of 1020 steel in shear under low-bigh strain rate change test sequence «(*:S &,:,).

theoretical curves together with the experimental data. In this calculation. the material
parameters are determined as:

0',0 =55 ksi (3.79 x 10'MPa)
0'00 =38 ksi (2.62 x lC)2 MPa)

~ = 190 ksi (1.31 x 10' MPa)
Et' =0

p, =s
n= ISO
k,. =0.691

and 9· is equal to 0.8% in F'II. 13 and equal to 0.9% in F'II. 14. The strain rates for these two
curves are 2.22 x 10-1 per sec and 25 per sec. The dotted lines in Fils. 13 "and 14 denote the
theoretical stress-strain curves at constant strain rate of 5per sec and 2.22 x 10-' per sec.
respectively.

The strain rate history effect is not discussed in terms of the material response for b.c.c. and
f.c.c. metallic materials. Figures S and 13 show the responses of stress and strain subjected to a
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Fig. 16. Behavior of 1020 steel in shear under )ow-bi&h strain rate cban&e test sequence <r ~ (..,).

change in strain rate from low to high for the two different kinds of material under in­
vestigation. It is seen that the responses are quite different. In Fig. 5, the strain rate varied
curve is lower than the constant high strain rate curve after the change of strain rate. But this
phenomenon is completely reversed in Fig. 13. The figure shows that after the change of strain
rate, the strain rate varied curve overshoots the constant high strain rate curve. Moreover. both
theory and experiment show an upper yield point immediately after the strain rate change.
Whereas the theory did not predict an upper yield in Fig. 5, the experiment in this regard was
inconclusive. A comparison of Figs. 7 and 14 also indicates a drastic difference in material
response for high-low strain rate change sequence for the two types of material. For aluminum,
the strain rate varied curve stays above the constant low strain rate curve and for mild steel, the
static reloading curve is below the constant strain rate static curve (dotted line in Fig. 14). No
upper yield point was indicated by both the theory and the experiment for mild steel. It is
remarkable that the theory predicts qualitatively all the features of the material response under
the above mentioned strain rate histories for both f.c.c. and b.c.c. metallic materials.

In 1971, Nicholas[l1] also presented experimental curves to show the strain rate history
effect of 1020 steel with a change in shear strain rate from 10-4 per sec to 25 per sec. Figure 15
shows the theoretical results and the experimental data. The material parameters used are:

'I'yO =22 ksi 0.52 x 1(f MPa)
'1'0° = 16.25 ksi (1.12 x 1()2 MPa)
~= 19Sksi(1.34x I()3MPa)

k.-=0.02
'l'~, = 16.25 ksi (1.12 x 1(f MPa)
'l'8c, = 16.5 ksi (1.14 x 1()2 MPa)

fJ. =12
n. =SO

b" =0.76
nIl =10

fJ,Jb" =0.397

In Fig. 15, the dash-dot-dash lines are experimental curves at high and low constant strain rates.
The open circles are the data representing material response when the shear strain rate is
changed from 10-4ls to 2S/s at 8= 1.6%.t It is seen from the figure that the varied strain rate
curve is in qualitative aareement with the experimental data. The only possible discrepancy is
that there exists an upper yield point in the theoretical curve immediately after the change of
strain rate; whereas in the experimental data such an upper yield point is not apparent. Indeed,
Nicholas[ll] pointed out that there was no upper yield point in his experiment as opposed to

tit is assumed that ~ S (..r in this calculation. The case of ~ ~ (.., is discussed later in the text.
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Smith's observation[lO] which clearly indicated an upper yield point after a sudden increase in
the strain rate.

No explanations were given by Nicholas or other researchers on the above mentioned
observed discrepancy. It appears that the present theory can provide a consistent view on these
seemingly incompatible observations. According to this theory, the above "discrepancy" is
actually the expected results of mild steel when the change of strain rate takes place at different
strain levels. Figure 16 shows the theoretical results for l* equal to 0.02 and 0.03 which are
greater than 'c,. Unfortunately, these curves cannot be compared with experimental results,
since to the author's knowledge experimental results for ,. ~ k, have not been reported in the
literature. The material parameters used in the calculation are same as for Fig. 15. It is obvious
that the curves in Fig. 16 do not have an upper yield point. Therefore, it may be concluded that
whether an upper yield point appears in the reloading curve or not depends on where the
change of strain rate takes place. If the change of strain rate occurs in the strain softening part
of the stress-strain curve, then there will be an upper yield point upon reloading at a higher
strain rate. On the other hand, if the change of strain rate occurs in the strain hardening range,
then no upper yield point is expected to occur.

REFERENCES
I. J. Hopkinson. Further experiments on the rupture of iron wire. Proc. Mallchtsttr Uttrary alld Phil. Sol. 11. 119 (872).
2. J. F. Bell. The dynamic plasticity of metals at high strain rates: an experimental generalization. ASME Winter Annual

Meeting (1965).
3. E. A. Ripperger. Dynamic plastic behavior of aluminum. copper and iron. ASME Wlllter Annual Muting (1965).
4. L E. Malvern. Experimental studies of strain-rate effects and plastic wave propagation in annealed aluminum. ASME

Winter Annual Meeting (1965).
5. U. S. Undholm and L M. Yeakely. Dynamic deformation of single and polycrystalline aluminum. J. Mech. Phys.

Solids 13, 41-53 (1965).
6. J. D. Campbell and K. J. Marsh, The effect of strain-rate on the post-yield now of mild steel. J. Mech. Phys. Solids 11,

49-63 (1963).
7. V. V. Sokolovsky. The propagation of elastic viscoplastic wave in bars. Prikadnaia Matemotika Mtkhanika U.

261-280 (1948).
8. L E. Malvern, The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate

effect. J. Appl. Mech. 18.203-208 (1951).
9. J. D. Campbell and J. Duby, The yield behaviour of mild steel in dynamic compression. Proc. R. Soc. Lond. Series A

236. 24-40 (1956).
10. R. C. Smith, Studies of effect of dynamic preloads on mechanical properties of steel. Exp. Mech. I, 153-1S8 (961).
II. T. Nicholas. Strain-rate and strain-rate history effect in several metals in torsion. Exper. Mech. II. 153-158 (1971).
12. U. S. Undholm. Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12.317-335 (1%4).
13. J. Klepaczko. Strain rate history effects for polycrystaJline aluminum and theory of intersections. J. Mech. Phys. Solids

16, 2SS-266 (1%8).
14. R. A. Frantz and J. Duffy, The dynamic stress-strain behavior in torsion of 1I()()'(} aluminum subjected to a sharp

increase in strain rate. J. Appl. Mech. 39. 939-945 (1972).
15. J. Klepaczko. Strain rate incremental test of copper. Tech. Rep.• Division of Engineering, Brown University (1974).
16. J. Klepaczko, R. A. Frantz and J. Duffy. History effects in polycrystalline f.c.c. metals subjected to rapid changes in

strain rate and temperature. Rozprawy Inzynimkie, Eng. Trans. 25. 3-22 (1m).
17. K. C. Valanis, A theory of viscoplasticity without a yield surface. Part I: General theory, Part II: Application to

mechanical behavior of metals. Archiwun Mechaniki Stosowonej 23, S17-551 (\971).
18. K. C. Valanis, Fundamental consequences of a new intrinsic time measure-plasticity as a limit of the endochronic

theory. Tech. Rep., Division of Materials Engineering, The University of Iowa (1978).
19. C. H. Kames and E. A. Ripperger, Strain-rate effect in cold worked high-purity aluminum. J. Mechs. Phys. Solids 14,

75-88 (1966).
20. R. Papirno and G. Gerard. Dynamic stress-strain phenomena and plastic wave propagation in metals. Trans. ASM 53.

381-406 (196\).
21. C. H. Un and H. C. Wu, Strain-rate effect in the endochronic theory of viscoplasticity.l Appl. Mech. 43. 92-96 (1976).
22. F. E. Hauser, J. A. Simmons and J. E. Dorn. Strain rate effects in plastic wave propagation. Response of Mttals to

High Velocity Dt{ormatiOll, (Edited by Shewmon and Zackay). Interscience, New York (l96\).
23. P. E. Senseny, J. Duffy and R. H. Hawley, Experiments on strain rate history and temperature effects during the

plastic deformation of close packed metals. J. Appl. Mech. 45. 66-66 (1978).
24. K. C. Valanis, Effect of prior deformation on cyclic response of metals. J. Appl. Mech. 4J. 441-447 (1974).

APPENDIX
To obtain a more general form of the intrinsic time measure which accounts for strain rate, it is assumed that a

spectrum of r intrinsic times exists and each intrinsic time corresponds to an internal state variable. Thus, for each intrinsic
time

(AI)
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where II; and 8i arc functions of 8, and I is the real time. The foregoing equation can be written as

(A2)

Introducing an average intrinsic time measure ( such that

(A3)

then

or

d(=:tk(lJ,ti)dlJ

(A4)

(A5)

where k, the strain rate sensitivity function, is a function of IJ and 9. For simplicity, it is assumed that k is a function of 8
only, i.e.

dl=k(8~dlJl. (A6)

This relation is the same as that proposed earlier by Lin and Wu(21). The only difference is that the total strain is now
replaced by the plastic strain.


